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WHO WE ARE
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AUSTRIAN LIBRARY NETWORK (AND SERVICE LTD) 4

● Network of Scientific, Humanities and Administrative Libraries in Austria

● More than 90 Institutions, still growing

● Institutions range from large libraries like the Austrian National Library, large university libraries to 
smaller foundations

● Hosting a shared catalogue with network zones and institutional zones



DESCRIPTION OF OUR USE-CASE
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THE USE-CASE

● Bibliographic data are at the heart of any library catalogue

● Nobody wants errors!

● Errors happen, no matter what

● We want to reduce the amount of user-facing errors

● We want to test records to find errors

● Whenever a record is changed it shall be checked

● The feedback shall be immediate

● The feedback shall be as actionable as possible
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STAKEHOLDER 7

Librarians Patrons Institution



THE USE-CASE

THE MOST EFFICIENT TIME TO FIX AN ERROR

● We are talking about catalogue issues

● When the staff user is still working with the data

● As soon as possible, ideally when the user is still in context

Solution: Webhooks!
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WEBHOOKS IN USE
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WHY WEBHOOKS

WHAT THEY PROMISE

● Almost immediate notification on catalogue changes

● No dependency on publishing runs

● No dependency on rules when or what needs to be changed to be triggered.

● Which promises are kept?

● The feedback is in near real-time

● Whenever a person saves the record in metadata-record, an update event is triggered

● Records are redelivered an hour later if the service is down for a short period of time

● Which hopes have been in vain?

● Normalization Jobs (even smaller ones 50k records) do not trigger Webhook events.
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WEBHOOKS

WHAT THEY CONTRIBUTE

● Immediate update on bibliographic updates due to user-interaction

● NOT: any possible update; therefore, updates are missing

● NOT: the full set of available data

● Mitigation:

● Add a second channel

● Fill the initial set of data with from a different source

● Resolve ambiguities between the different sources
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REQUIRED COMPONENTS
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COMPONENTS FOR THE BASIC TASKS

DELIVERING THE IDENTIFIED PROBLEMS TO THE USERS
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COMPONENTS FOR THE BASIC TASKS

HANDLING RECORDS, IDENTIFYING ERRORS, MAKE ERRORS SEARCHABLE AND 
IDENTIFIABLE
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COMPONENTS FOR THE BASIC TASKS

HANDLING RECORDS, IDENTIFYING ERRORS, MAKE ERRORS SEARCHABLE AND 
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COMPONENTS TO CONNECT & FILL GAPS 16
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COMPONENTS TO CONNECT & FILL GAPS 18

    
                                 

            

             

                                             

            

    
                     



OUR STACK 19



ABSTRACTION
CHECKING RECORDS
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BASE CLASSES FOR CHECKING AND REPORTING ERRORS

MESSAGES, INPUT, OUTPUT
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BASE CLASSES FOR CHECKING AND REPORTING ERRORS

MESSAGES, INPUT, OUTPUT
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CHECKOBJECT WITH DATA 23

                         

              

            

             

    

              

                                 

          

      

             

            

             

            

                  

                   

                                       

           

                     

           

                  

      

      

    

    

         
     

                             

      

    

    

         
     

                                         



CHECKRESULT 24

                         

              

            

             

    

              

                                 

          

     

             

            

             

            

                  

                   

                                       

           

                     

           

            

                 

            

                                 

      

       

                         

                   

                                      

        

            

         

               
      

    

    

         



THE TRAWLER IN ACTION
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THE USERS' PLACE IN THE USE-CASE
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LIVE EXAMPLE

● We want to look for an error and do something with it
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STRENGTHS, WEAKNESSES
& OUTLOOK
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WEAKNESSES

● Debugging can be challenging if things go wrong

● The overall architecture needs to be very carefully crafted; changes to fundamental message 
properties require a very careful approach

● Alma does not reliably create events for every change

● Data normalization jobs do not trigger updates (but may fix or introduce errors)

● No possibility to queue sets of data into alma webhooks

● Different sources of data are aggregated from different sources. Unfortunately, the time of change is 
not 100% safe to be determined.

● Inconsistencies in data from two sources will happen.
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STRENGTHS

● Event-driven approach pays off, swift feedback leads to user-activity

● Developers can focus on smaller concerns

● Alma-webhooks are coming in close to real-time

● Webhook retries in case of service interruptions work well

● Messaging-based architecture separates concerns cleanly

● Individual services are rather simple to replace
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OUTLOOK

● Adding more data checks

● Adding other types of errors/data to the monitored data source

● Bothering ExLibris to add an option to receive all changes to data as a notification on the bib webhook

● Bringing the service to regular production

● Exploring on using an Alma CloudApp to report check results
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THANK YOU

Questions?
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