
OFF THE HOOK

USING WEBHOOKS FOR PROVIDING FEEDBACK ON
BIBLIOGRAPHIC DATA

STEFAN MAJEWSKI

IGELU DEVELOPER DAY LEUVEN 2023-09-14

CONTENTS

● Description of our use-case

● Webhooks in their use

● What kind of components do we need?

● Abstraction of checking errors

● Fishing for errors

● The trawler in action

● Weaknesses

2

WHO WE ARE

3

AUSTRIAN LIBRARY NETWORK (AND SERVICE LTD) 4

● Network of Scientific, Humanities and Administrative Libraries in Austria

● More than 90 Institutions, still growing

● Institutions range from large libraries like the Austrian National Library, large university libraries to
smaller foundations

● Hosting a shared catalogue with network zones and institutional zones

DESCRIPTION OF OUR USE-CASE

5

THE USE-CASE

● Bibliographic data are at the heart of any library catalogue

● Nobody wants errors!

● Errors happen, no matter what

● We want to reduce the amount of user-facing errors

● We want to test records to find errors

● Whenever a record is changed it shall be checked

● The feedback shall be immediate

● The feedback shall be as actionable as possible

6

STAKEHOLDER 7

Librarians Patrons Institution

THE USE-CASE

THE MOST EFFICIENT TIME TO FIX AN ERROR

● We are talking about catalogue issues

● When the staff user is still working with the data

● As soon as possible, ideally when the user is still in context

Solution: Webhooks!

8

WEBHOOKS IN USE

9

WHY WEBHOOKS

WHAT THEY PROMISE

● Almost immediate notification on catalogue changes

● No dependency on publishing runs

● No dependency on rules when or what needs to be changed to be triggered.

● Which promises are kept?

● The feedback is in near real-time

● Whenever a person saves the record in metadata-record, an update event is triggered

● Records are redelivered an hour later if the service is down for a short period of time

● Which hopes have been in vain?

● Normalization Jobs (even smaller ones 50k records) do not trigger Webhook events.

10

WEBHOOKS

WHAT THEY CONTRIBUTE

● Immediate update on bibliographic updates due to user-interaction

● NOT: any possible update; therefore, updates are missing

● NOT: the full set of available data

● Mitigation:

● Add a second channel

● Fill the initial set of data with from a different source

● Resolve ambiguities between the different sources

11

REQUIRED COMPONENTS

12

COMPONENTS FOR THE BASIC TASKS

DELIVERING THE IDENTIFIED PROBLEMS TO THE USERS

13

COMPONENTS FOR THE BASIC TASKS

HANDLING RECORDS, IDENTIFYING ERRORS, MAKE ERRORS SEARCHABLE AND
IDENTIFIABLE

14

COMPONENTS FOR THE BASIC TASKS

HANDLING RECORDS, IDENTIFYING ERRORS, MAKE ERRORS SEARCHABLE AND
IDENTIFIABLE

15

COMPONENTS TO CONNECT & FILL GAPS 16

COMPONENTS TO CONNECT & FILL GAPS 17

COMPONENTS TO CONNECT & FILL GAPS 18

OUR STACK 19

ABSTRACTION
CHECKING RECORDS

20

BASE CLASSES FOR CHECKING AND REPORTING ERRORS

MESSAGES, INPUT, OUTPUT

21

BASE CLASSES FOR CHECKING AND REPORTING ERRORS

MESSAGES, INPUT, OUTPUT

22

CHECKOBJECT WITH DATA 23

CHECKRESULT 24

THE TRAWLER IN ACTION

25

THE USERS' PLACE IN THE USE-CASE

26

LIVE EXAMPLE

● We want to look for an error and do something with it

27

STRENGTHS, WEAKNESSES
& OUTLOOK

28

WEAKNESSES

● Debugging can be challenging if things go wrong

● The overall architecture needs to be very carefully crafted; changes to fundamental message
properties require a very careful approach

● Alma does not reliably create events for every change

● Data normalization jobs do not trigger updates (but may fix or introduce errors)

● No possibility to queue sets of data into alma webhooks

● Different sources of data are aggregated from different sources. Unfortunately, the time of change is
not 100% safe to be determined.

● Inconsistencies in data from two sources will happen.

29

STRENGTHS

● Event-driven approach pays off, swift feedback leads to user-activity

● Developers can focus on smaller concerns

● Alma-webhooks are coming in close to real-time

● Webhook retries in case of service interruptions work well

● Messaging-based architecture separates concerns cleanly

● Individual services are rather simple to replace

30

OUTLOOK

● Adding more data checks

● Adding other types of errors/data to the monitored data source

● Bothering ExLibris to add an option to receive all changes to data as a notification on the bib webhook

● Bringing the service to regular production

● Exploring on using an Alma CloudApp to report check results

31

THANK YOU

Questions?

32

	Slide 1: Off the Hook
	Slide 2: Contents
	Slide 3: Who we are
	Slide 4: Austrian Library Network (and Service Ltd)
	Slide 5: Description of our Use-Case
	Slide 6: The Use-Case
	Slide 7: Stakeholder
	Slide 8: The Use-Case
	Slide 9: Webhooks in use
	Slide 10: Why Webhooks
	Slide 11: Webhooks
	Slide 12: Required Components
	Slide 13: Components for the Basic Tasks
	Slide 14: Components for the Basic Tasks
	Slide 15: Components for the Basic Tasks
	Slide 16: Components to Connect & Fill GAps
	Slide 17: Components to Connect & Fill GAps
	Slide 18: Components to Connect & Fill GAps
	Slide 19: Our Stack
	Slide 20: Abstraction Checking Records
	Slide 21: Base Classes For Checking and Reporting Errors
	Slide 22: Base Classes For Checking and Reporting Errors
	Slide 23: CheckObject with Data
	Slide 24: CheckResult
	Slide 25: The Trawler in Action
	Slide 26: The users' Place in the Use-Case
	Slide 27: Live Example
	Slide 28: Strengths, Weaknesses & Outlook
	Slide 29: Weaknesses
	Slide 30: Strengths
	Slide 31: Outlook
	Slide 32: Thank you

