Skip to main content
logo

2023 Annual Conference

May 16–18, 2023

Palace Station Hotel & Casino, Las Vegas, NV, US

IMPORTANT NOTICE: The date, time, and room assignment of YOUR presentation is SUBJECT TO CHANGE.

Proposal authors can use this tool to see where they have been placed in the program agenda for an Oral or Poster Session.

Scroll down to search by the Submitter or Author Name, by Date/Time, or by Keywords.

Confirm your place in the schedule by following the instructionss that were emailed to you. Each presentation must have a separate paid registration. Contact the ACCI office immedicately by email at admin@consumerinterests.org to report any conflict, all corrections to the details of the presentation (including author names and the order they are listed as this is how it will be in the final program), or if you have any questions. Please be sure to reference the session title(s), date(s), and time(s) when you contact us.

C1c Predicting Household Consumption Using Machine Learning Algorithms (MlAs), Rwanda Case Study

Wednesday, May 17, 2023 at 10:45 AM–12:15 PM PDT
Room 1
Short Description

This extended proposal assessed the performance of various machine learning algorithms for better prediction of household consumption (low-consumption, high-consumption but insecure, and high-consumption) in Rwanda using 14,580 sample households from 1,260 sample villages from a recent integrated household living condition survey (EICV5), various open-source MLAs were compared considering wide-ranging features (87). We empirically evaluated the 12 classifiers. The main findings are as follows: (a) household food expenditure, the total number of children (< 14 years) at the household level, and household own food expenditures are the most predictive features for household consumption; (b) multiple kernel support vector machine, eXtreme gradient boosting, and multinomial logit have significantly higher predictive accuracy between 86.6 % and 88.5 %; and (c) the inclusion of shock-coping strategies does not necessarily improve prediction. Therefore, some survey questions used to assess poverty worldwide could be reduced and prioritized for important features, such as household food characteristics.

Type of presentation

Accepted Oral Presentation

Submitter

Fabrice Nkurunziza, African Center of Excellence-Data Science

Authors

Fabrice Nkurunziza, The African Centre of Excellence in Data Science, University of Rwanda
Richard Kabanda, The African Centre of Excellence in Data Science, University of Rwanda
Patrick McSharry, Carnegie Mellon University
Loading…